
ANNUAL JOURNAL OF ELECTRONICS,  2009,  ISSN 1313-1842 

 

Hardware Accelerator for Raptor Decoder 
 

Todor Mladenov
 
and Saeid Nooshabadi and Kiseon Kim  

 
Abstract – Hard Raptor Codes (designed for erasure 

channels) are widely used for mobile multimedia content 

delivery, and yet they have not been investigated in the 

context of embedded systems where the energy dissipation is 

as important as the timing performance. The most time 

consuming part of Raptor decoder is the matrix inversion 

operation. This paper proposes a hardware accelerator, for 

two matrix inversion algorithms, as a part of Raptor decoder 

implemented on a system on a chip (SoC) platform with a 

soft-core embedded processor. The performance, energy 

profile and resource implication are analyzed and compared 

with a pure software implementation. 
Keywords – Raptor Codes, Matrix Inversion, FPGA 

 

I. INTRODUCTION 
 

 Multimedia on mobile devices requires secure delivery 

of various sized data with minimum negotiation overhead. 
Here is where Raptor codes [1],[2] have come quite useful 

and outperformed the already well known coding schemes. 

Recently there have been two standards, namely 3GPP 
MBMS (Multimedia Broadcast/Multicast Services) [3] and 

DVB-H [4], which have included systematic Raptor codes 
in their specifications for content delivery. 

 Although Raptor codes are growing as a preferred 

mobile multimedia delivery scheme, experimental data 
relating to their implementations are reported from 

simulation on a workstation platform. As far as we are 
aware, their hardware implementations for mobile 

embedded systems have not yet been investigated. 
  This paper looks at the implementation of Raptor codes 

on an embedded system platform, where resources in terms 

of computational and power dissipation are limited. The 
most demanding part of the Raptor decoder, profiled to 

take 92% of the decoding time, is the matrix inversion 
operation. This motivates us to look for a hardware 

implementation of the matrix inversion that would reduce 

both the decoding time and the energy dissipation. We 
propose such dedicated hardware blocks for the well 

known Gaussian elimination (GE) algorithm and the 
efficient matrix inversion algorithm (SA) proposed in 

[3],[4]. The relative performance of these two algorithms in 
terms of decoding time, power, energy and area trade offs 

are demonstrated. We propose and design hardware 

enhancements for GE and SA based on their algorithmic 
structures. Finally, based on the profiling data, suitability 

assessments are made for the implementation of GE and 
SA on an embedded system platform. 

 The chosen embedded system platform is a NIOS soft-

core processor, running on an EP1S40F780C5 Altera 
Stratix FPGA, with 41,250 logical elements, 3,423,744 

total memory bits (2,097,152 bits maximum single memory 
size), 14 DSP blocks and 129 (9-bit) embedded multipliers.  

Fig.1. Raptor Codes on hardware/software NIOS  embedded 

system 

 

This device is housed on the NIOS Development Board 

Stratix Professional Edition with 16MB of SDRAM 
memory. NIOS soft-core processor can be augmented with 

custom instructions and additional peripheral devices. Fig.1 
depicts the high level block diagram of the embedded SoC 

platform for the implementation of Raptor codes. 
 This paper is organized as follows. In Section II, we 
briefly explain the operation of a Raptor decoder. Section 

III describes and presents the details of GE and SA, the two 
algorithms for the matrix inversion used in this paper. 

Section IV presents the hardware implementation 
performance results in terms of execution time, power and 

energy, and hardware resources and compares them to the 

software implementation presented in [5]. Section V 
concludes the paper. 

 

II. SYSTEMATIC RAPTOR DECODER 
 

 A Raptor code can be viewed as a regular linear block 

code, which makes it possible to be represented by a 
generator matrix. A block diagram of systematic Raptor 

encoder and decoder is shown in Fig.2. The decoding 

process of Raptor codes exchanges the positions of the 
Code Constraints Processor and the LT Encoder(Decoder) 

with the proper dimensions for the GLT LT generator 
matrices. The output vector e, containing N symbols, 

generated by the encoder is received by the decoder across 
the channel as input vector e', containing N' (K ≤ N' ≤ N) 

encoded symbols (which may be nonconsecutive, where K 

is the number of source symbols). Vector e' is padded with 
S+H zeroes to dimension it to (M=N'+S+H). Starting with 

(N'-K) the value of N' is iteratively incremented to make 
the Code Constraints Preprocessor matrix A invertible. 

The difference (N'-K) is equal to or greater than the number 

of received encoded symbols lost in the channel. The 
decoding is performed according to (1) and (2), where GLT 

is a LT generator matrix with dimension of K × L. All 
operations are performed in Galois Field GF(2). 

 

T. Mladenov, S. Nooshabadi and K. Kim are with the 

Department of Information and Communications, Gwangju 

Institute of Science and Technology, Gwangju, South Korea, e-

mails: {todor,saeid,kskim@gist.ac.kr} 

 



ANNUAL JOURNAL OF ELECTRONICS, 2009 

Fig.2. Block diagram of the systematic Raptor Codes 

 
 

                                (1) 
 

 

                                       (2) 
 

 At the decoder side the submatrix GLT (1..N') is first 
built from the input data. The sequence number of the n

th
 

received encoded symbol is used to generate the n
th

 row of 
the submatrix GLT (1..N') through the  LT encoding 

process. 

 

III. MATRIX INVERSION ALGORITHMS 
 

 The most common matrix inversion algorithm is GE [6]. 

The pseudo code for a GF(2) GE algorithm where 

elimination and backward substitution are performed 

together, is shown in Algorithm 1 .The main operations 

involved in this algorithm are “row exchange” and “row 

XOR” (Exclusive-OR). 

 The specifications in [3] and [4] recommend SA as a 

more efficient technique for matrix inversion. A version of 

SA technique is presented in Algorithm 2. The operation of 

SA is as follows. 

 In Phase I matrix A is reduced to the following form: 

 

 

 

                  (3) 

 

 

 

 This reduction is performed iteratively, by first 

relocating the rows containing the minimum number of 

“1s” to the top, and then moving the first column having 

“1” in this row to the beginning at column location i, and 

the remaining columns with “1” to the end of the row at 

column locations m-u-1. Note that i and u are initialized to 

0. While, in each row, i increments only once per row, u 

can increment multiple times. 

 In each iteration of the algorithm one row from the top is 

excluded from the consideration. Further, the count of “1s” 

within a row is confined to columns i to (m-u-1). Phase I is 

completed when (L=i+u). 

 

 In Phase II submatrix U is partitioned into lower and 

upper submatrices U'i×u and U''M-i×u, respectively. The 

lower matrix U''M-i×u is transformed into the identity 

matrix Iu through the normal Gaussian elimination 

technique. The (M-L) rows that are left below Iu are 

discarded. The form of the matrix produced at the end of 

Phase II is: 

1'

]1:0[ ][ 

  LM

T

L Aezc
T

]1:0[]1:0[   LLTK cGt









 



 uM

iiM

i

LMPhase U
Z

I
A

I

)(

)(



ANNUAL JOURNAL OF ELECTRONICS, 2009 

 

 

                          (4) 

 

 

 

 In Phase III the upper matrix U' is zeroed by XOR of its 

individual rows with the sufficient number of rows from 

the lower matrix Iu. 

 

 

                            (5) 

 

 

 

 It was shown in [5] that for pure software 

implementation and the "PACKED WORD" memory 

organization (where 32 matrix elements are packed 

together into a single 32-bit memory word) the simple GE 

algorithm outperforms SA by a factor of 20.48. 

 

IV. HARDWARE IMPLEMENTATION 
 

 The inversion of the Code Constraints Processor matrix 
in Fig. 2 has been profiled to be the most time consuming 

part of the Raptor decoder. To reduce this computational 

bottleneck, in what follows, a dedicated hardware block for 
matrix inversion is proposed (Dedicated Raptor Code 

Hardware in Fig.1), and its performance, power, energy 
dissipation, and the required hardware resources are 

presented and analyzed. 
 Fig.3 shows the block diagram of the hardware 

accelerator block. The Avalon switch fabric uses a slave 

port to set the Control Registers that initialize the hardware 

accelerator. During the initialization the size and initial 

addresses for matrix and vectors are set. Control Registers 

also control operation of the hardware like initiating START 

and STOP commands. The Hardware accelerator block 

uses an Avalon master port to access the whole memory 

mapped address space of the NIOS processor, and send 

interrupts to NIOS and receive interrupts from other 

peripheral devices. For a more flexible design Row & 

Column Exchange Logic, and Row XOR Logic units are 

designed to be self contained units that interface with the 

GE/SA Control Logic finite state machine. They share a 

common address generation path through the Arithmetic 

Unit that contains two 32-bit adders and one 16-bit 

multiplier. The Latch circuit only exists in the SA version 

of the hardware accelerator. 

 

A. Performance 

 SA algorithm includes a procedure for counting the 

number of “1s” in the matrix rows (Phase 1, lines 4 to 11) 

in Algorithm 2. After a memory read access the Avalon 

switch fabric does not retain the  data word just read, but 

goes into the “high impedance'' state until the next read 

cycle. Since we use the “PACKED WORD” memory 

organization we need a mechanism to retain the read data 

to avoid multiple memory accesses and bit masking to 

acquire all the bits in a row. 

 

 

Fig.3. Hardware Accelerator Block 
 

1) Memory access interface enhancement: The 

proposed hardware block in Fig. 3 for the SA algorithm 

employs a special circuit that latches the data word read 

from the memory into the Latch until the next word is 

needed. The subsequent memory accesses for the matrix 

elements are made to this register, as long as the required 

matrix entries are in the current word. Fig. 4 depicts the 

performance of the SA algorithm with and without the 

addition of this circuit for several values of K. This simple 

enhancement improves the performance by a factor of 5.5. 

 It should be noted that the performance improvement is 

solely due to the “the count of 1s” operation in Phase I of 

Algorithm 2 for SA where memory accesses are sequential. 

However, there is no performance improvement in Phases 

II and III of this algorithm, and Algorithm 1 for GE, where 

“row exchange”, “column exchange” and “row XOR'” 

operations involve search for the elements of the matrix 

from non sequential addresses. 

 At 100 and 35 MHz speeds for the SDRAM, and the 

logic, the hardware versions of GE and SA perform better 

than their software versions, as reported in [5], by factors 

of 1.76 and 20.31, respectively. This is in spite of the fact 

that the software implementation of the algorithms runs on 

a 100 MHz NIOS processor; a clock rate almost 3 times 

faster. It should also be noted that hardware version of GE 

performs better than the hardware version of SA by a factor 

of 1.48. This ratio is less than the equivalent 20.48 ratio for  

 

Fig.4. Performance of the hardware-enhanced Phase I of SA 

algorithm 















uiu

uii

Phase
IZ

UI
A

II















uiu

uii

Phase
IZ

ZI
A

III



ANNUAL JOURNAL OF ELECTRONICS, 2009 

 

Fig.5. Effect of SDRAM memory speed on GE and SA 

 algorithms 
 

the software implementations in [5]. The reduction in the 

performance ratio indicates that the SA algorithm benefits 

far more that the GE in switching from software to the 

hardware platform. This is mainly due to the speed up in 

the “the count of 1s” procedure due to the simple 

enhancement. 

1) Effect of SDRAM and logic clock rates: Fig.5 

shows the effect of the SDRAM speed on GE and SA 

algorithms for (K=1024). The data is plotted for three 

different logic clocks - 25, 30 and 35 MHz. While both 

algorithms benefit from a faster SDRAM, the effect of 

memory speed is more noticeable on the operation of the 

GE algorithm. This is especially true for the slower 

SDRAM region where the plots for SA and GE cross over 

each other. The point of cross over moves to right for the 

higher logic speed. This indicates that a faster logic 

requires a faster SDRAM if the relative superior 

performance of GE algorithm over SA were to be 

maintained. This highlights the fact that the SA algorithm 

benefits more from a faster logic. 

 From Fig. 5 it can be inferred that the enhancement in the 

“the count of 1s” procedure has the following effect. The 

increase in the logic speed from 25 MHz to 35 MHz is 

slightly more effective in improving the performance of the 

SA algorithm. This is because the number of slow memory 

accesses is significantly reduced due to the enhancement 

which causes the computation to be more dependent on the 

speed of the logic. 

 

B. Power and Area 

 Table 1 shows the power, energy and hardware resource 

requirements for the FPGA implementation of the NIOS 

soft-core processor with the proposed dedicated hardware 

accelerator block for the matrix inversions, with the 

SDRAM and logic operating at the speeds of 100 and 35 

MHz, respectively. The NIOS processor is placed in idle 

state when the control is passed to the dedicated hardware 

accelerator. In spite of the addition of a new block, the 

power dissipation is less for all cases, when compared to 

the corresponding software implementations in [5]. From 

the data in Table 1 it can be seen that the energy required 

for the matrix inversion is 1.44 times less for the GE 

algorithm compared to the SA. 

The implementation with the dedicated hardware 

block for GE needs several times less energy to invert the 

same matrix compared to entirely software implementation 

[5]. The saving factor is 3.43. The similar energy saving 

factor for SA is, impressively, much higher at 22.04. 

 
TABLE 1. POWER, ENERGY AND RESOURCES FOR THE HARDWARE 

IMPLEMENTATION FOR (K=128) WITH 100 MHZ SDRAM AND 35 

MHZ LOGIC SPEED. 

 

GE POWER [MW] 1,564.71 

SA POWER [MW] 1,564.02 

GE ENERGY [MJ] 53.86 

SA ENERGY [MJ] 77.64 

 
HARDWARE 

RESOURCES 

LOGIC ELEMENTS 8,172 

MEMORY BITS 47,360 

 

 

 

V. CONCLUSIONS 
 

 This paper has evaluated the performance of hard Raptor 

decoder on embedded system. The performance of two 

matrix inversion algorithms on dedicated hardware block 

for embedded system has been presented. It was shown that 

the hardware implementation achieves better performance 

with less energy compared to a software implementation in 

[5]. Furthermore, it was found that contrary to the 

recommendation, based on the profiling on a workstation 

platform, even under hardware implementation the 

Gaussian elimination performs significantly better than the 

alternative reportedly more efficient algorithm, in terms of 

execution speed and energy saving. 

 

ACKNOWLEDGEMENTS 

 
 This work was (in part) supported by the Center for 

Distributed Sensor Networks at GIST. 

 

REFERENCES 
 

[1] A. Shokrollahi,  Raptor Codes, IEEE Transactions of 

Information Theory, vol. 52, pp. 2551-2567, Jun. 2006. 

[2] M. Luby, M. Watson, T. Gasiba, T. Stockhammer, and W. Xu, 

Raptor codes for reliable download delivery in wireless broadcast 

systems, Third IEEE Consumer Communications and Networking 

Conference, vol.1, Jan. 2006, pp.192-197. 

[3] 3GPP TS 26.346, Technical Specification Group Services and 

System Aspects; Multimedia Broadcast/Multicast Services 

(MBMS); Protocols and codecs, 3GPP Technical Specification, 

Rev. V7.4.1, Jun. 2007. 

[4] Digital Video Broadcasting (DVB); IP Datacast over DVB-H: 

Content Delivery Protocols, ETSI Technical Specification, Rev. 

V1.2.1, 2006. 

[5] T. Mladenov, S. Nooshabadi, A. Dassatti, and K. Kim, 

Analysis and implementation of raptor codes on embedded 

system, 2009 IEEE International Conference on Electronics, 

circuits and systems, (submitted). 

[6] D. Parkinson and M. Wunderlich, A compact algorithm for 

Gaussian elimination over GF(2) implemented on highly parallel 

computers, Parallel Computing, vol. 1, pp. 65073, Aug. 1984. 


