
Analysis and Implementation of Raptor Codes on
Embedded Systems

T. Mladenov and K. Kim
Dept. Info. & Commu.,

Gwangju Inst. of Sci. and Tech.,
Gwangju 500-712, South Korea,
Email: {todor,kskim}@gist.ac.kr,

S. Nooshabadi
Dept. of EE & CE,

Michigan Tech. Uni.,
Houghton, MI 49931

Email: saeid@mtu.edu

A. Dassatti
VLSI Lab, Electronic Dept.,

Politecnico di Torino,
10130 Torino, Italy,

Email: alberto.dassatti@polito.it

Abstract—Raptor codes have been proven very suitable for
mobile multimedia content delivery, and yet they have not
been analyzed in the context of embedded systems. At the
heart of Raptor codes for binary erasure channel (BEC) is the
matrix inversion operation. This paper analyzes the performance,
energy profile and resource implication of two matrix inversion
algorithms for the Raptor decoder on a system on a chip (SoC)
platform with a soft-core embedded processor. We show how the
cache size, matrix memory type and organization affect the two
algorithms under consideration.

I. INTRODUCTION

Raptor codes have drawn significant attention since their
introduction in [1]. They come as a powerful extension of
Luby transform (LT) codes [2], [3], providing linear time
encoding (regardless of the quantity of repair data generated),
linear time decoding (independent of the amount of loss) and
very close to the ideal code performance under any channel
loss condition.

Multimedia on mobile devices requires delivery of various
sized data with minimum negotiation overhead. Raptor codes
have come quite useful for forward error correction (FEC)
on BEC and outperformed the already well known coding
schemes. Recently there have been two standards, namely
3GPP MBMS (Multimedia Broadcast/Multicast Services) [4]
and DVB-H [5], which have included systematic Raptor codes
in their specifications for content delivery.

The operation of Raptor codes, with some guidelines for
their implementation to achieve good performance, as speci-
fied in 3GPP, can be found in [3]. Implementation and perfor-
mance evaluation of Raptor codes for multimedia applications,
on a workstation platform, are discussed in [6]. As far as
we are aware, their software implementations on a mobile
embedded system have not yet been investigated.

This paper looks at the implementation of Raptor codes
on an embedded system platform, where resources in terms
of the CPU speed, computational power, memory, and power
dissipation are limited. We investigate the matrix inversion
operation, the most demanding part of the Raptor decoder,
by implementing it using two algorithms; the well known
Gaussian elimination (GE) and the efficient matrix inver-
sion algorithm (SA) proposed in 3GPP [4], and DVB [5]
standards. We investigate the relative performance of these

two algorithms in terms of decoding time, power and energy
on an embedded processor platform. The effects of different
memory types and organization for the matrix storage, the
cache size, the performance behavior of the Raptor codes
are demonstrated for the software implementation of both
algorithms. Finally, based on the profiling data, suitability
assessments are made for the implementation of GE and SA
on an embedded system platform.

The chosen embedded system platform is a NIOS II soft-
core processor, running on an Altera Stratix FPGA. Fig. 1
depicts the high level block diagram of the embedded SoC
platform for the implementation of Raptor codes.

NIOS II CPU

A
va
lo
n
Sw
itc
h
Fa
br
ic

JTAG Debug
Module

SDRAM
Controller

On-Chip
SRAM

System Timer

Performance
Counter

Tristate bridge
to off-chip
memory

SDRAM
CHIP

SRAM
CHIP

Fig. 1. Raptor codes on NIOS II embedded system.

II. RAPTOR CODES

Raptor codes, being a class of the Fountain codes, have the
ability to generate as many encoding symbols as needed on-
the-fly. The decoder can recover the source symbols from a set
of slightly more encoded symbols, with a performance very
close to the ideal erasure code.

A. Systematic Raptor Encoding

A block diagram of Systematic Raptor Encoder/Decoder is
shown in Fig. 2. The encoding process is summarized in two
main blocks, namely the Code Constrains Preprocessor and
the LT Encoder [4], [5].

1) Code Constraints Processor: Let t denote K 32-bit
source symbols that are to be encoded. Then d, at the input
of the Raptor encoder, contains (L = K + H + S) symbols,
(with H half and S parity symbols) [4], [5], and is defined as:

d[0:L−1] = [zT tT]T (1)

978-1-4244-7773-9/10/$26.00 ©2010 IEEE 45

GLDPC(1..S)S

H

K

(-1)

GHalf(1..H)

GLT(1..K)

K S H

ZSxH

IH
IS

Code Constraints Processor

N GLT(1..N)

L

LT Encoder

GLDPC(1..S)S

H

N’

(-1)

GHalf(1..H)

GLT(1..N’)

K S H

ZSxH

IH
IS

Code Constraints Processor

K GLT(1..K)

L

LT Decoder

d c

e

ct
e'

Channel
Systematic Raptor Encoder

Systematic Raptor Decoder

z
t

Fig. 2. Block diagram of the systematic Raptor codes.

where z[0:H+S−1] is a vector of zeros.
The parameter S is the smallest prime integer such that:

S ≥ �(0.01 × K)� + X (2)

with X(X − 1) ≥ 2K. Similarly the parameter H is the
smallest integer such that:(

H

�H/2�

)
=

H!

2(H/2)!
≥ K + S (3)

The Code Constrains Preprocessor multiplies d with inverse
pre-coding matrix A−1 to produce intermediate symbols c:

c[0:L−1] = A−1
L×L · d[0:L−1] (4)

with

AL×L =

[
GLDPC IS Z

GHalf IH

GLT

]
(5)

where submatrices IS and IH are identity matrices, and Z is
a zero submatrix of dimension S × H; GLDPC is a S × K
low density parity check (LDPC) generator defined as:

GLDPC · [c[0], ..., c[K − 1]]T

= (c[K], ..., c[K + S − 1])T (6)

GHalf is a H × (K + S) matrix of Half symbols, defined as:

GHalf · [c[0], ..., c[S + K − 1]]T

= [c[K + S], ..., c[K + S + H − 1]]T (7)

GLT is a K × L LT generator submatrix included in matrix
A for the first K symbols to render Raptor codes systematic:

GLT · [c[0], ..., c[L − 1]]T = [t[0], ..., t[K − 1]]T (8)

2) LT Encoder: With source vector t with K symbols pro-
cessed by Code Constraints Processor, LT Encoder generates
any number of encoded symbols e according to:

GLT · c = e[0:N−1] (9)

where GLT is an N × L LT generator matrix, with N ≥
K. The value of N is selected sufficiently larger than K to
compensate for the possible loss of encoded symbols in the
channel and, hence, to make A invertible at the decoder side.

Although LT itself is a nonsystematic code, the overall
Raptor code is systematic:

e[i] = d[S + H + i], ∀i=0,...,K−1 (10)

That is because GLT , for symbols (i = 0...K − 1), is
included in the pre-processing matrix A, therefore, making
the resulting overall Raptor code systematic. For a fixed value
of K, GLDPC , GHalf and GLT (0..K − 1) are pre generated
once and stored in memory.

The structure of GLT shows how the encoded output
symbols e are generated from the intermediate c symbols. The
“1” values on the gth row of GLT identify the intermediate
symbols that are XORed to generate the encoded symbol e[g].

Before the encoded symbols are sent to the channel they
are grouped and augmented with their corresponding encoding
symbol ID (ESI), the details of which are omitted from the
diagram in Fig. 2 in the interest of simplicity.

B. Systematic Raptor Decoding

The decoding process of Raptor codes exchanges the posi-
tions of the Code Constraints Processor and the LT Encoder
(Decoder) [3], as illustrated in Fig. 2, with the GLT LT
generator matrices appropriately sized. The input vector e′

containing N ′ (K ≤ N ′ ≤ N) encoded symbols (which may
be nonconsecutive) is padded with S + H zeroes to size it to
(M = N ′+S+H). Starting with (N ′ = K) the value of N ′ is
iteratively incremented to make the matrix A invertible. The
difference (N ′ −K) is equal to or greater than the number of
received encoded symbols lost in the channel.

The decoding is performed according to:

c[0:L−1] = [zT e′T] · A−1
M×L (11)

t[0:K−1] = GLT · c[0:L−1] (12)

where GLT is a K × L LT generator matrix.
At the decoder side the submatrix GLT (1..N ′) is first built

from the input data. The ESI of the nth received encoded
symbol is used to generate the nth row of the submatrix
GLT (1..N ′) through the LT encoding process.

III. MATRIX INVERSION ALGORITHMS

The most common matrix inversion algorithm is GE. The
main operations involved in this algorithm are “row exchange”
and “row XOR” (Exclusive-OR).

The specifications for 3GPP and DVB-H standards [4],
[5], recommend SA as a more efficient technique for matrix
inversion. The operation of SA is divided in phases as follows.

In Phase I matrix A is reduced to the following form:

APhaseI (M×L) =

[
Ii

————— UM×u

Z(M−i)×i

]
(13)

This reduction is performed iteratively, by first relocating the
rows containing the minimum number of “1s” to the top, and
then moving the first column having “1” in this row to the
beginning at column location i, and the remaining columns
with “1” to the end of the row at column locations m−u−1.

46

Note that i and u are initialized to 0. While, in each row, i
increments only once per row, u can increment multiple times.

In each iteration of the algorithm one row from the top is
excluded from the consideration. Further, the count of “1s”
within a row is confined to columns i to (m − u − 1). Phase
I is completed when (L = i + u).

In Phase II submatrix U is partitioned into lower and upper
submatrices U′

i×u and U′′
M−i×u, respectively. The lower

matrix U′′
M−i×u is transformed into the identity matrix Iu

through the normal GE technique. The (M −L) rows that are
left below Iu are discarded. The form of the matrix produced
at the end of Phase II is:

APhaseII =

[
Ii Ui×u

Zu×i Iu

]
(14)

In Phase III the upper matrix U ′ is zeroed by XOR of its
individual rows with the sufficient number of rows from the
lower matrix Iu.

APhaseIII =

[
Ii Zi×u

Zu×i Iu

]
(15)

The code profiling on the NIOS II processor, shown in Table
I, highlights the fact that the inversion of A is the most
time critical part of the system, contributing to up to 92%
of the decoding time in Raptor codes. Therefore, we have
concentrated our efforts on the optimization of the inversion
algorithm in the Raptor decoder.

TABLE I
RAPTOR CODE PROFILING FOR K = 1024.

GE SA
Task Time(%) Time(%)

Initializing Raptor Code 0.57 0.04
Generating Matrix A 3.84 1.81

Generating Matrix GLT 0.03 0.01
Inverting Matrix A 91.93 91.28

Other 3.63 6.87
Total 100.00 100.00

IV. SOFTWARE IMPLEMENTATION

Next we show the analysis of the software implementation
of Raptor codes on the SoC platform in Fig. 1. The NIOS II
soft-core processor is runs at the clock speed 100 MHz.

A. Performance

The execution time performances of the two matrix inver-
sion algorithms GE and SA are analyzed and compared when
implemented on the NIOS II processor as software modules.
The experimentation was carried out for (K = 1024) (a typical
value for MBMS applications), symbol size of 32 bits and up
to two lost encoded symbols, which leads to A matrix with
(S = 59), (H = 13), adding up to (L = 1096) columns. There
are eight more rows than columns (N = K + 8, M = 1102)
to compensate for the two lost encoded symbols.

Two types of memory organizations for matrix A have been
investigated. In the first organization, (denoted as “WORD”)
each 1-bit matrix element is assigned to a 32-bit memory word.
In the second organization, (denoted as “PACKED WORD”),

32 matrix elements are packed together into a single 32-
bit memory word, therefore, significantly (at best 32 times)
reducing the size of the required memory.

We have investigated the effect of data cache on the per-
formance of GE and SA inversion algorithms. Additionally,
we have analyzed the effect of data memory type in the
performance of the two algorithms. We have implemented the
system using three types of memory for the storage of the
matrix data structure; 16MB SDRAM, 1MB external SRAM,
and 256KB on-chip SRAM (respectively, denoted as SDRAM,
EXT SRAM, ONCHIP SRAM.)

2

20

200

0 512 1024 2048

Lo
g

Ti
m

e
[s

]

Cache Size [byte]

GE SDRAM WORD
GE SDRAM PACKED WORD
GE EXT_SRAM PACKED WORD
GE ONCHIP_SRAM PACKED WORD
SA SDRAM WORD
SA SDRAM PACKED WORD
SA EXT_SRAM PACKED WORD
SA ONCHIP_SRAM PACKED WORD

Fig. 3. Code Constraints Processor matrix inversion in software for K=1024.

The comparative performance of the two algorithms is
summarized in Fig. 3. The sizes for the external SRAM, and
256KB on-chip SRAM memory types are not enough to fit
matrix size corresponding to (K=1024) in “WORD” organi-
zation. Therefore, we report only the results for SDRAM in
Fig. 3. In the absence of data cache and the “WORD” memory
organization, SA performs 2.05 times better than GE for the
SDRAM. These results confirm the superior performance of
SA over GE, as reported in the 3GPP [4] and DVB-H [5]
standard recommendations.

However, this is not the case for the “PACKED WORD”.
Under this memory efficient organization, GE outperforms SA
by a factor of 17.03 for the SDRAM, 20.02 for the external
SRAM and 23.6 for the on-chip SRAM. The difference in the
values for the external and on-chip SRAMs is due to the extra
read clock cycle needed by the Avalon interconnect switch
(Fig. 1) while accessing the external SRAM.

The reason for the superior performance of GE over SA
in the “PACKED WORD” organization can be explained
as follows. SA uses “column exchange“ operations in order
to reduce the amount of “row exchange” and “row XOR”
operations. Additionally, the counting of ”1” matrix elements
in Phase I of SA, significantly increases the number of memory
accesses, bit masking, and bit extraction operations, which far
outweigh the positive effects of the reduction in the number
of “row exchange” operations. Moreover, columns are moved
to the beginning or the end of the matrix, which prevents the
usage of the same memory word. SA performs well under the
“WORD” memory organization but lags significantly behind
under the “PACKED WORD” organization.

Further, from Fig. 3 it can be seen that for the case of

47

“PACKED WORD” organization and zero cache size for GE,
the difference in the execution time between the implementa-
tion employing SDRAM, and those employing external and
on-chip SRAMs are 5.4 and 7.1 seconds. The equivalent
differences for the case of SA are 75.6 and 96.5 seconds,
respectively, which are far more than those for GE. This
indicates that the SA benefits more significantly from a faster
memory type. This is due to the increased memory accesses
for the reason explained in the previous paragraph.

Fig. 3 also reveals that the effect of cache is most significant
for SDRAM. The improvement is highest for the cache size
of 512 bits and becomes insignificant for values greater than
1024 bits. The 512-bit cache size has negative (slowing) effect
on external and on-chip SRAMs for GE, and even causes the
SDRAM case to perform faster than external SRAM. That
is because the cache size is not enough to hold the required
amount of data, resulting in frequent cache updates. The higher
rate of cache conflict, and lower cache penalty for the external
and on-chip SRAMs, compared with much larger penalty
incurred in the case of SDRAM, depredates the performance
for the two SRAMs in comparison with SDRAM.

TABLE II
POWER, ENERGY AND HARDWARE RESOURCE FOR THE SOFTWARE

IMPLEMENTATION, FOR K=128.

No Cache Cache 1024 Bytes
SDRAM EXT ONCHIP SDRAM EXT ONCHIP

SRAM SRAM SDRAM RAM SRAM
Word GE Power [mW] 1, 864.26 1, 754.18 1, 881.49 1, 897.68 1, 781.45 1, 923.58

Word SA Power [mW] 1, 869.61 1, 743.51 1, 883.09 1, 898.59 1, 777.79 1, 925.51

Bit GE Power [mW] 1, 880.36 1, 742.47 1, 882.73 1, 896.85 1, 758.78 1, 925.90

Bit SA Power [mW] 1, 871.97 1, 722.72 1, 881.12 1, 783.55 1, 697.73 1, 924.94

Word GE Energy [mJ] 1, 522.10 568.26 429.23 1, 297.97 496.85 385.26

Word SA Energy [mJ] 995.01 412.72 326.03 1, 131.58 417.92 316.69

Bit GE Energy [mJ] 184.81 72.03 56.92 166.08 66.95 54.68

Bit SA Energy [mJ] 1, 711.29 750.91 660.72 955.36 603.82 612.99

Hardware Logic Elements 5, 130 5, 333 5, 264 5, 628 5, 745 5, 702

Resources Memory Bits 47, 360 47, 360 2, 144, 512 56, 384 56, 384 2, 153, 536

B. Power and Area

Table II shows the power and energy estimation for the
matrix inversion operation, using SA and GE, implemented in
SDRAM, external and on-chip SRAMs, for 1024 bits cache
and no cache cases. The power and energy are calculated for
the case of (K=128), where the matrix fits in all memories
with both “WORD” and “PACKED WORD” organizations.

The total power includes the core dynamic and static and the
I/O powers of the FPGA, programmed with the soft-core NIOS
II processor that executes the codes for SA and GE algorithms,
for the inversion of the Code Constraints Processor matrix.
It also includes the power from the external memory chips.
For a more accurate estimation of power and energy the
switching activity for each case is extracted from the actual
code execution profiling, and supplied to the power analysis
tool. The code profiling data, along with information provided
from the memory chips manufactures, were used to estimate
the contribution of the power from the external memories.

According to Table II, the power dissipation does not
vary significantly between the two different algorithms and
memory organizations, as long as the same memory type is

used. There is a difference between the three distinct memory
types. The cache adds relatively small amount of additional
power dissipation, although providing significant performance
improvement.

The energy required to execute the codes for the two matrix
inversion algorithms on the NIOS II platform is estimated as
the product of execution time and the power dissipation. The
GE algorithm under “PACKED WORD” memory organization
shows an overwhelming better energy dissipation compared to
the other cases, for all three memory types considered.

From Table II it also can be seen that the the cache
memory marginally improves the energy consumption of both
algorithms; a counter intuitive result. This indicates that a
small power increase, due to the inclusion of the cache, is
marginally outweighed by the reduction in the execution time.

Further, Table II shows the hardware resource requirements
in terms of logic elements and the memory bits used by the
six different implementations on FPGA. The addition of cache
results in a modest increase in the amount of logic elements.

V. CONCLUSION

This paper evaluated the performance of two matrix in-
version algorithms for Raptor decoder on an embedded sys-
tem. Two memory organization schemes have been analyzed,
with clear benefits of the “PACKED WORD” organization
demonstrated. The effect of storing data on different memory
types have been investigated for both algorithms. It was
found, under ”PACKED WORD” memory organization and
small symbol sizes, that contrary to the recommendation,
based on the reported profiling on a workstation platform,
the Gaussian elimination performs significantly better than the
alternative reportedly more efficient implementation, in terms
of execution speed and energy.

ACKNOWLEDGMENT

This work was supported in parts by the National IT
Industry Promotion Agency of Korea, and by the Center for
Distributed Sensor Network at GIST, and in part by the World
Class University (WCU) program at GIST, through a grant
provided by the Ministry of Education, Science and Technol-
ogy (MEST) of Korea (Project No.R31-2008-000-10026-0).

REFERENCES

[1] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, pp.
2551–2567, June 2006.

[2] M. Luby, “LT codes,” in Proceedings of the 43rd Annual IEEE Symposium
on Foundations of Computer Science, November 2002, pp. 271–280.

[3] M. Luby, M. Watson, T. Gasiba, T. Stockhammer, and W. Xu, “Raptor
codes for reliable download delivery in wireless broadcast systems,” in
Proceedings, Third IEEE Consumer Communications and Networking
Conference, vol. 1, January 2006, pp. 192–197.

[4] 3GPP TS 26.346, Technical Specification Group Services and System
Aspects; Multimedia Broadcast/Multicast Service (MBMS); Protocols and
codecs, 3GPP Technical Specification, Rev. V7.4.1, June 2007.

[5] Digital Video Broadcasting (DVB); IP Datacast over DVB-H: Content
Delivery Protocols, ETSI Technical Specification, Rev. V1.2.1, 2006.

[6] P. Cataldi, M. P. Shatarski, M. Grangetto, and E. Magli, “Implementation
and performance evaluation of LT and raptor codes for multimedia
applications,” in Proceedings, IEEE International Conference on Intelli-
gent Information Hiding and Multimedia Signal Processing, IIH-MSP’06,
2006.

48

